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Energy-Efficient Collection of Sparse Data in Wireless
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We consider the energy efficiency of collecting sparse data in wireless sensor networks using compressive
sensing (CS). We use a sparse random matrix as the sensing matrix, which we call Sparse Random Sampling
(SRS). In SRS, only a randomly selected subset of nodes, called the source nodes, are required to report data
to the sink. Given the source nodes, we intend to construct a data gathering tree such that (1) it is rooted at
the sink and spans every source node and (2) the minimum residual energy of the tree nodes after the data
collection is maximized. We first show that this problem is NP-complete and then develop a polynomial time
algorithm to approximately solve the problem. We greedily construct a sequence of data gathering trees over
multiple rounds and propose a polynomial-time algorithm to collect linearly combined measurements at each
round. We show that the proposed algorithm is provably near-optimal. Simulation and experimental results
show that the proposed algorithm excels not only in increasing the minimum residual energy, but also in
extending the network lifetime.
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1 INTRODUCTION
In this article, we consider the data collection problem in Wireless Sensor Networks (WSNs)
(Lindsey et al. 2002; Di Francesco et al. 2011). The WSN is regarded as a key enabling technology
for data acquisition and sensing in Internet of Things (IoT) architectures (Gubbi et al. 2013;
Perera et al. 2014). A WSN consists of low-cost, low-power, and energy-constrained sensors
which acquire and transmit information to the sink through wireless links (Akyildiz et al. 2002;
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Bouabdallah et al. 2009; Jongerden et al. 2010; Cheng et al. 2010). A major limiting factor of the
performance of WSNs is the energy of battery-operated sensors. A sensor will cease to operate if
it depletes its battery energy. Our goal in this article is to design an energy-efficient data gathering
strategy.

Fundamental approaches for energy efficiency include balancing the traffic loads imposed on
sensors, as in Liang and Liu (2007), Wu et al. (2010), and Stanford and Tongngam (2009), to list
a few. One approach for energy efficiency is to build a spanning tree such that the minimum
residual energy of nodes is maximized. For example, Liang and Liu (2007) considered an online
data-gathering problem for WSN processing multiple queries. A greedy algorithm called Maximum
Network Lifetime (MNL) was proposed to maximize the minimum residual energy after each query
is answered. MNL constructs a tree by starting from the sink and iteratively adding a node with
the maximum residual energy to the tree, and it is shown to perform well with various types of
queries. Another line of approach is to maximize the network lifetime or minimum operation time
of sensors, where the operation time of a sensor is defined as the time until its energy is depleted.
For example, Stanford and Tongngam (2009) studied the lifetime maximization problem with data
aggregation. Their method combines a linear program with the exact computation of minimum
cost arborescence. They proved that the proposed approach achieves at least (1 − ϵ ) times the
optimum lifetime. Wu et al. (2010) focused on distributing the network loads by building a spanning
tree which maximizes the network lifetime. They proved that the problem is NP-complete and
proposed an approximation algorithm which iteratively improves nodes with low energy levels.
Note, however, in Wu et al. (2010) it is assumed that the sink aggregates data from all the sensors,
and the energy cost of transmissions over links is fixed across the network. In this article, we
investigate a more general problem; we will consider maximizing the minimum residual energy
for the data collection from an arbitrary subset of nodes. In addition, we assume that the energy
cost per link may vary over the links so as to capture the varying link qualities across the network.

Recently, Compressive Sensing (CS) (Donoho 2006; Baraniuk 2007; Candès and Wakin 2008) has
drawn much attention in the literature of WSNs (e.g., Luo et al. (2009), Wang et al. (2007), Ebrahimi
and Assi (2014), Karakus et al. (2013), and Haupt et al. (2008)). The idea behind CS is to reliably
recover a high-dimensional signal (i.e., the original data vector) from the measurements of a sig-
nificantly lower dimension. Luo et al. (2009) proposed the Compressive Data Gathering (CDG) to
collect data in WSNs using the CS technique. In CDG, the sink collects the linear combinations
of the sensed data instead of the individual data samples. Once a sufficient number of linear com-
binations are collected, the sink is able to recover the original sparse data vector by solving an
ℓ1-based convex optimization (Eldar and Kutyniok 2012). The main advantage of CDG is that it
not only reduces the energy consumption of the sensors, but it also evenly distributes loads across
the network. Wang et al. (2007) proposed a class of sparse random sensing matrices that do not
compromise recovery performance. In their scheme, each node aggregates one measurement as
a linear combination of raw data, as in Luo et al. (2009). The sink can recover the original data
by collecting these measurements from any m nodes. However, in Wang et al. (2007), the total
number of aggregated measurements is n because there are n nodes and each node aggregates one
measurement. This is redundant because the sink needs onlym measurements. Ebrahimi and Assi
(2014) applied the sparse random matrix proposed in Wang et al. (2007) to CDG and proposed the
Minimum Spanning Tree Projection (MSTP) scheme. MSTP aimed to minimize the total energy
consumption by constructing multiple MSTs. Each MST is rooted at a randomly selected node
and is used to gather one measurement. The aggregated measurement is sent to the sink via the
shortest path. Karakus et al. (2013) compared CS-based schemes with conventional data-gathering
techniques in WSNs from the perspective of network lifetime. They showed that the network life-
time can be significantly prolonged provided that the original data are sparse and the network is
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dense. However, they only considered dense sensing matrices, whereas we adopt sparse sensing
matrices to further improve energy efficiency. For a more comprehensive survey on the use of CS
in WSNs, readers are referred to Haupt et al. (2008).

All of the preceding works considered data collection from every node (i.e., construction of
a spanning tree). However, we consider data collection from an arbitrary subset of nodes. In an
earlier work, Fürer and Raghavachari (1994) proposed an algorithm to construct a tree that spans
an arbitrary subset of nodes and minimizes the maximum degree of the nodes in an unweighted
graph. Our setup is more general than that of Fürer and Raghavachari (1994) because our goal
is to maximize the minimum residual energy in the weighted graphs. Specifically, we consider a
weighted graph in which the energy consumption of a node is a function of the weights of the
edges incident on it. Moreover, each node may initially have a different amount of energy stored
at its battery. Our algorithm takes into account all of the initial energy settings, the residual energy
of the nodes, and the edge weights.

Contributions: We investigate the energy-efficient collection of compressive data using SRS. The
goal is to maximize the minimum residual energy at the retrieval of a data vector; the problem,
however, proves to be hard because the set of source nodes changes randomly over multiple rounds.
Instead, we take a greedy approach of maximizing the minimum residual energy in a round-by-
round manner; namely, at each round, we aim to construct a data-gathering tree which spans
all the source node associated with that round. We first prove that even the optimization for a
single round is NP-complete. We then propose a polynomial time algorithm called Approximately
Maximum min-Residual Energy Steiner Tree (AMREST) to build a data-gathering tree for each
round. Using AMREST, we iteratively find good routes which circumvent the sensors with low
residual energy. We show that AMREST is provably efficient such that (i) there exists a performance
limit which polynomial-time algorithms cannot universally exceed over all possible systems; (ii) it
is guaranteed that AMREST performs close to that limit and the gap is only a constant. In the
special case where the initial energy reserves and communication costs per link are uniform across
the network, we show that the optimality gap is constant irrespective of the network topology.
Simulation and experimental results demonstrate that AMREST performs well in maximizing the
minimum residual energy as well as extending network lifetime.

Paper Organization: In Section 2, we propose sparse random sampling and present three exam-
ples of stable recovery using sparse sensing matrices. We formulate our problem in Section 3 and
propose AMREST in Section 4. The performance analysis is provided in Section 5. In Section 6, we
present simulation results. Section 7 provides experimental results on a WSN test bed. Section 8
concludes the paper.

2 SPARSE RANDOM SAMPLING (SRS)
We first briefly introduce the CS technique. In CS, the following linear model is considered:

y = Ax, (1)

where y ∈ Rm is the measurement vector, x ∈ Rn is the data vector, and A ∈ Rm×n is called the
sensing matrix. A vector x is said to be k-sparse in a basis Ψ if x = Ψc, and the number of nonzero
entries in c does not exceed k . Suppose A is a Gaussian random matrix; that is, each entry of A is
drawn independently and identically distributed (i.i.d.) from the Gaussian distribution N (0, 1

m ). It
is well known that ifm = O (k log(n)) and k ≪ n, the k-sparse vector x can be recovered with high
probability via linear programming (Candès and Wakin 2008; Eldar and Kutyniok 2012).

Consider a WSN with n sensors. The sensor data is represented by x where the jth entry x j
denotes the raw data of the jth node of the network. In CDG, the sink collects data according to
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Fig. 1. Comparison of the data collection between the traditional CDG and SRS.

the linear model given by Equation (1), where A is a Gaussian random matrix. We shall define the
ith round as the process of collecting yi given by

yi =

n∑

j=1
ai jx j , i = 1, 2, . . . ,m, (2)

where ai j denotes the entry in the ith row and jth column of A. Thus, there is a total ofm rounds
of data collection. Consider an example of data collection under CDG: See Figure 1(a). The sink
will collect m measurements y1,y2, . . . ,ym over m rounds. Hence, every node transmits for m =
O (k logn) times. Thus, CDG significantly reduces and evenly distributes the network loads, as
compared to collecting every individual measurement, which requires on averageO (n) number of
transmissions per node (Luo et al. 2009).

Recently, sparse random matrices were shown to have similar recovery performance as the
Gaussian random matrix (Wang et al. 2007; Li et al. 2013; Gilber and Indyk 2010). A sparse random
matrix is a matrix whose entries are zero independently with a fixed probability. Importantly, if
ai j = 0, we will not need the data x j when collecting yi because yi is a linear combination given
by Equation (2). That is, during the ith round, we only need to collect data from the sensors with
nonzero ai j . Thus, by using sparse random matrices, we effectively select the nodes at random for
the data collection. We will refer to such selection as Sparse Random Sampling (SRS). The selected
nodes are called the source nodes. The examples in Figure 1 compare the data collection between
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SRS and the traditional CDG. In the example, the sensing matrix for SRS is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 a14 0 a16
a21 0 a23 a24 0 0
...
...
...
...
...
...

0 am2 am3 0 am5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

At each round, only a random subset of nodes transmit data, as opposed to the traditional CDG
in which every node transmits during data collection. This leads to reduced energy consumption
and latency associated with the data collection. At the first round of the example in Figure 1(b), we
have a12 = a13 = a15 = 0; see the first row of A in Equation (3). We can put the nonsource nodes
(i.e., node 2, 3, and 5) into “sleep” mode, which further saves energy. Meanwhile, at the second
round, node 6 (the shaded node in Figure 1(b)) is not a source node (i.e., a26 = 0), but was forced
to stay “awake” so that the source nodes could reach the sink.

In large-scale WSNs, it is of key interest to efficiently collect data over source and nonsource
nodes under SRS. We aim to construct a data collection tree which not only spans the source
nodes, but also evenly distributes the network loads across the network based on the residual
battery capacity of the sensors so as to prolong the operation time of the sensors. In this article,
our objective is to maximize the minimum residual energy among the sensors at the completion
of retrieving a data vector x using SRS. Later, we will show that our approach is also effective
in extending network operation time; e.g., retrieving as many data vectors as possible without
depleting the battery of any sensor. To our knowledge, the problem of maximizing the minimum
residual energy associated with sparse sensing matrices has not been explored yet.

Next, we provide three examples of sparse sensing matrices which guarantee the stable recovery
of the original data vector x. All of those sparse matrices are obtained by randomly “thinning” the
entries of A with a fixed probability. Here, we introduce a key parameter used throughout this
article called retention probability s ∈ (0, 1], which will denote the probability that an entry of A is
nonzero.

Theorem 2.1 (Baraniuk et al. 2008). Suppose the original data vector x ∈ Rn is k-sparse and
each entry in the sensing matrix A is independently drawn from the distribution

ai j =
√

1/m ×
⎧⎪⎪⎨⎪⎪⎩
+1 with probability s/2,
0 with probability 1 − s,
−1 with probability s/2,

with s ∈ [ 1
3 , 1]. Then, A has the same recovery performance as the Gaussian random matrix; i.e.,

m = O (k logn) is sufficient to guarantee the stable recovery of x.

Theorem 2.1 implies that, on average, up to two-thirds of the entries in A can be zero without
compromising recovery performance because s can be decreased to 1

3 .

Theorem 2.2 (Wang et al. 2007). Suppose the original data vector x ∈ Rn is k-sparse under the
basis Ψ and satisfies ∥x∥∞∥x∥2 ≤ h. Suppose each entry in the sensing matrix A is independently drawn
from the distribution

ai j =
√

1/sm ×
⎧⎪⎪⎨⎪⎪⎩
+1 with probability s/2,
0 with probability 1 − s,
−1 with probability s/2,

(4)
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where s ∈ (0, 1], and the number of measurements satisfies

m =
⎧⎪⎨⎪⎩
O
( h2k2 (1+γ )

sϵ 2 logn
)

if h2/s ≥ Ω(1),

O
( k2 (1+γ )

ϵ 2 logn
)

if h2/s ≤ O (1),
(5)

where γ and ϵ are two positive constants. Then, given y, A and Ψ, one can produce an estimate x̂ such
that ∥x − x̂∥22 ≤ (1 + ϵ )∥x∥22 with probability at least 1 − n−γ .

Theorem 2.2 is applicable when the peak-to-total energy of the data vector is bounded by the pa-
rameter h. We observe that m = O (k2 logn) in Theorem 2.2. Recall that m = O (k logn) when the
Gaussian random matrix is used as the sensing matrix. This implies that, in order to guarantee the
stable recovery, an increased number of measurements is needed if the matrix in Equation (4) is
used as the sensing matrix.

Li et al. (2013) developed a class of sparse random matrices which guarantees stable recovery
with the same order of measurementsm = O (k logn) as that of the Gaussian random matrix.

Theorem 2.3 (Li et al. 2013). Suppose the original data vector x ∈ Rn is k-sparse and non-
negative. Let ai j = bi jqi j, where bi j is independently and identically drawn from the α-stable maxi-
mally skewed distribution with unit scale, and qi j satisfies

qi j =

{
1 with probability s,
0 with probability 1 − s, (6)

where s ∈ (0, 1]. Then, given y and A, it suffices to use m = k log(n/ϵ )
1−e−(1−s )k measurements such that x can

be recovered with an arbitrary small error with probability at least 1 − ϵ .

We observe thatm = O (k logn) if s = Θ(k−1); i.e., one may gather data from only Θ(k−1) fraction
of the nodes without degrading recovery performance. In Theorem 2.3, the data vector is required
to be nonnegative, which applies to many types of signals in practice (e.g., a bounded signal can
be transferred to a non-negative signal (Li et al. 2014)). Any of the aforementioned matrices can
be used for SRS; we will, however, propose an algorithm which can be used for arbitrary s ∈ (0, 1]
in the sequel.

In this article, we assume that the original data vector is sparse in a certain basis. In real imple-
mentations, it is a nontrivial problem to make data vectors sparse in some basis. Although such
sparsification techniques are beyond the scope of this article, we will briefly mention some re-
lated issues. The sparsification problem was investigated in an early work by Quer et al. (2009).
It is not straightforward to achieve incoherence between the random projection of sensors’ data
through routing and the sparse representation of the signal, which is required for CS recovery.
The authors considered several popular transformations and found that none is able to spar-
sify real datasets while being incoherent with respect to the routing matrix at the same time.
Later, the authors proposed a sparsification framework under the CS model in Quer et al. (2012)
called SCoRe1. SCoRe1 is able to effectively self-adapt to the real-time data vectors by exploit-
ing a feedback control loop which can estimate the signal reconstruction error. The key tech-
nique for SCoRe1 is to use the Principle Component Analysis (PCA) to capture the spatial and
temporal characteristics of real data vectors measured by WSNs. Their work showed that, under
some statistical assumptions, the use of CS for data collection in WSNs is legitimate through ran-
dom sampling of sensors’ data, similar to SRS followed by a combined use of CS and PCA for
recovery.
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3 PROBLEM FORMULATION
Consider a weighted graphG = (V ,L) whereV := {v1,v2, . . . ,vn } is the set of nodes including the
sink v1 and L is the set of edges. Each edge l ∈ L is associated with a weight through the function
w : L → [α , β], where 0 < α ≤ β . The weights are related to our model for energy consumption,
which will be explained later. Recall that our goal is to maximize the minimum residual energy
at the completion of retrieving the data vector x. In order to retrieve x, we need to collect a total
number of m measurements. Denote Si the set of source nodes for the ith round. In other words,
Si consists of nodes whose ith coefficient is nonzero; i.e., Si := {vj : ai j ! 0} where ai j is the ith
coefficient of nodevj . The data-gathering tree for the ith round is denoted byTi = (VTi ,LTi ) where
VTi ⊆ V is the set of nodes in Ti and LTi ⊆ L is the set of edges in Ti .

The random coefficients in A should be known to the network. However, there exists a practical
issue in disseminating all the entries of A to the entire network; it may incur significant communi-
cation overhead. Later, we will outline a method which uses Pseudo-Random Number Generators
(PRNG) in order to minimize such overhead.

We assume that all the nodes, including the sink, use the identical PRNG. The following proce-
dure is performed at network initialization:

—The sink generates a seed, say c , for PRNG. Note that a seed is a number used to initialize
PRNG.

—The sink broadcasts c to the network.
—Each sensor generates its own seed through combining the sink’s seed and its node ID (e.g.,

a concatenation of the seed and the ID).
—Denote the seed of node i by ci . Node i will generate random coefficients aji of A in round
j, using the PRNG initialized by seed ci .

Note that seeds ci , i = 1, . . . ,n, are known to the network, which enables every node to generate
the same set of random numbers as other nodes. Thus, sensing matrix A is effectively known to
the network during the entire rounds of data aggregation. The communication overhead is simply
that of broadcasting c and thus is present only at system initialization. During data collection, the
sink will compute and broadcast the routing information of Ti to each node at the beginning of
the ith round. Node vj in tree Ti will generate aji as its coefficient. After receiving data from all
of its children in Ti , vj linearly combines the received data and its own data ai jx j and transmits
the result to its parent. Note that ai j ! 0 if vj is a source node, and ai j = 0 if vj is not a source
node.

Next we introduce the model for energy consumption. Denote I := {I (v1), I (v2), . . . , I (vn )} the
set of initial energy where I (vj ) is the initial energy of node vj . We assume the sink is a special
node and has an infinite amount of initial energy (i.e., I (v1) = ∞). Suppose each node transmits
data through a data packet of size b bits. Furthermore, we assume that the energy consumed by
transmitting and receiving one bit of data via an edge is approximately equal (Raghunathan et al.
2002). Although this is a somewhat simplified model for energy expenditure, we are able to capture
diverse channel characteristics among nodes by reflecting varying energy costs per link to edge
weights. Specifically, node vi consumes rl amount of energy to transmit one bit data to node vj
through the link l = (vi ,vj ). Nodevj consumes the same amount of energy rl to receive one bit of
data from node vi . Thus, node vi consumes brl amount of energy to transmit one packet to node
vj through the edge l = (vi ,vj ), and nodevj consumes brl amount of energy to receive one packet
from node vi . Denote w (l ) = brl for any l ∈ L. Then, given a data-gathering treeT = (VT ,LT ), the
energy consumed by node v is given by ∑l ∈Lv∩LT w (l ) when the data is gathered through T . The
notations used in this article are summarized in Table 1.
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Table 1. Notations

s Retention probability
G (V ,L) Network graph, whereV is the set of nodes and L is the set of edges
VT Set of nodes in the tree T
LT Set of edge in the tree T
Si Set of source nodes for the ith round
I Set of initial energy, i.e., I := {I (v ) : v ∈ V }
lv Edge that is incident on node v
Lv Set of edges that are incident on the node v
l†v Edge incident on v which has the largest weight, i.e.,

l†v := {lv ∈ Lv : w (lv ) ≥ w (l ′v ),∀l ′v ∈ Lv }
Tm Collection ofm trees for data gathering
T (S ) Collection of trees in which any treeT satisfies: (1)T spans S ; (2) all

leaves of T are in S
D (G,v ) Degree of node v in graph G
E (T ,v ) Residual energy of node v if data is gathered through T
R (T ) Minimum residual energy of nodes in T
T (p) Path in T that connects two endpoints of the path p
F (v ) Component in the forest F that contains node v
F (p) Union of components F (v ) for each node v in the path p, i.e.,

F (p) = ∪v ∈pF (v )

The objective is to find a collection Tm = {T1,T2, . . . ,Tm } which maximizes the minimum resid-
ual energy:

(P0) maximize
Tm

R (Tm ),

subject to Si ⊆ VTi , i = 1, 2, . . . ,m.

whereR (Tm ) := minv ∈V E (Tm ,v ) and E (Tm ,v ) is the residual energy of nodev after measurements
are gathered through trees in Tm . (P0) is quite hard to solve; e.g., we will later show that (P0) is NP-
complete even for m = 1. Instead, we take a greedy approach, such that we attempt to maximize
the minimum residual energy during each round. Specifically, given Si , we will construct a tree
Ti subject to Si ⊆ VTi so that the minimum residual energy of nodes in Ti is maximized. A similar
greedy approach was adopted in Liang and Liu (2007) in a different context; the authors intended
to maximize the number of queries answered by the WSN without expiring any node’s energy.
They also proposed to greedily maximize the minimum residual energy of the nodes for each data
collection query. The proposed approach is outlined in Algorithm 1.

While such greedy approximations may work reasonably well in practice, the optimality gap
can be significant. For example, when we greedily maximize the minimum residual energy at each
round, we may consume much energy in total, which can be burdensome to the network in the
long run. This can be partly mitigated by putting a limit on the total energy consumed by the
network at each round. We discuss this issue in detail in Section 4.5. Another optimistic aspect of
our approach is that the number of rounds is at most m = O (k2 logn). Thus, we expect that the
gap between our approximation and the solution to (P0) grows relatively slowly with increasing
network size n.

Next, let us consider the construction of the data-gathering tree for a single round. Without loss
of generality, we consider the ith round and let S := Si . We will construct a treeT = (VT ,LT ) which
ACM Transactions on Sensor Networks, Vol. 13, No. 3, Article 22. Publication date: August 2017.
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ALGORITHM 1: Greedy Round-by-Round Data Collection
1: Ii : set of the initial energy for the ith round.
2: Ti : the data gathering tree for the ith round.
3: Input the graph G, the vector of initial energy I and the sensing matrix A.
4: Output the data gathering tree Ti (i = 1, 2, . . . ,m) for collecting the ith measurement.
5: Initialize I1 = I.
6: Compute the set of source nodes for collecting the ith measurement:

Si = {vj : ai j ! 0}, i = 1, 2, . . . ,m.
7: for i = 1 tom /∗ measurements are collected round by round.∗/ do
8: Compute the data gathering tree Ti based on AMREST described in Algorithm 2.
9: Update the initial energy of nodes for the next round:

Ii+1 (v ) = Ii (v ) −∑l ∈LTi ∩Lv w (l ), ∀v ∈ VTi .
10: Collect the ith measurement yi by broadcasting the information of Ti and the ith row of A to nodes.
11: end for

spans S . Denote E (T ,v ) the residual energy of node v if T is applied to gather data. We have that

E (T ,v ) = I (v ) −
∑

l ∈LT ∩Lv

w (l ). (7)

Our goal is to find a tree T ∈ T (S ) such that the minimum residual energy of nodes in T is
maximized:

(P) maximize
T ∈T (S )

R (T ) := min
v ∈VT

⎡⎢⎢⎢⎢⎢⎣
I (v ) −

∑

l ∈LT ∩Lv

w (l )

⎤⎥⎥⎥⎥⎥⎦
.

Theorem 3.1. (P) is NP-complete.

Proof. See Appendix A. !

The rest of this article is devoted to developing an algorithm to approximately solve (P).

4 PROPOSED ALGORITHM
The key idea behind our algorithm is to repeatedly reduce the loads of the nodes having small
residual energy. Specifically, we begin by constructing a random tree T ∈ T (S ). Next, we search
for a path p, in which all the nodes are not in T except for the endpoints, such that the load of a
node which has small residual energy can be reduced by adding p and deleting an edge in T that
connects to this node. This process is repeated until we cannot find such a path to “improve” the
nodes that have small residual energy.

4.1 Basic Notions
We first introduce basic notions related to the proposed algorithm. Some of the notions were
adopted from Fürer and Raghavachari (1994) and Wu et al. (2010), which we modify and gen-
eralize to fit our model. Given an arbitrary tree T = (VT ,LT ), we partition VT into three disjoint
subsets as follows:

—Vb (T ) = {v ∈ VT : R (T ) ≤ E (T ,v ) < R (T ) +w (l†v )}.Vb is the set of nodes whose residual en-
ergy is close to the minimum residual energy of nodes in T . The nodes in Vb are called
bottleneck nodes.

—Vp (T ) = {v ∈ VT : R (T ) +w (l†v ) ≤ E (T ,v ) < R (T ) + 2w (l†v )}. The nodes in Vp are called
pseudo-bottleneck nodes. These nodes are close to becoming bottleneck nodes.
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—Vs (T ) = {v ∈ VT : E (T ,v ) ≥ R (T ) + 2w (l†v )}. The nodes in Vs (T ) are called safe nodes. The
safe nodes have relatively large residual energy.

We partition the nodes not in T into two disjoint subsets: Vc (T ) and Vnc (T ).

—Vc (T ) = {v ∈ V c
T : I (v ) ≥ R (T ) + 3w (l†v )}. The nodes in Vc are called candidate nodes. Can-

didate nodes have sufficient residual energy and are used to reduce the loads of bottleneck
nodes.

—Vnc (T ) = {v ∈ V c
T : I (v ) < R (T ) + 3w (l†v )}. The nodes in Vnc are called noncandidate nodes.

We briefly explain how the candidate nodes are used. Consider a path p, in which all the inter-
mediate nodes between two nodes in T are candidate nodes. Suppose p = (x ,v1, . . . ,vk ,y) where
x ,y ∈ VT and v1, . . . ,vk are candidate nodes. Suppose we add p to T and delete edge (x ,v1) to
generate a new tree. Then, any intermediate node in p never becomes a bottleneck node because p
is a path and thus the degree of any candidate node is at most two inT . Hence, the residual energy
of the candidate node vi (i = 1, . . . ,k ) is decreased by at most 2w (l†vi ). Therefore, by definition,
the residual energy of vi is at least R (T ) +w (l†vi ). Thus,Vc (T ) is the set of nodes that can be safely
added to T during such a modification. Note that, in this article, we either delete edge (x ,v1) or
(vk ,y). Such augmented paths are used to reduce the loads of bottleneck nodes, as will be detailed
later. In summary, we have that VT = Vb ∪Vp ∪Vs and V c

T = Vc ∪Vnc .
Based on the aforementioned node partitioning, we introduce the following notions:

—Valid path: We refer to a path p = (u,h1,h2, . . . ,hk ,v ) as a valid path if u,v ∈ Vs ∪Vp and
h1,h2, . . . ,hk ∈ Vc (i.e., the endpoints are pseudo-bottleneck nodes or safe nodes), but every
intermediate node is a candidate node. A valid path may contain only two nodes (e.g., p =
(u,v )), which reduces to an edge in L.

— Improvement: Suppose p = (u, . . . ,v ) is a valid path and T (p) contains a bottleneck or
pseudo-bottleneck node b. We reduce the energy consumption of b by adding p to T and
deleting an edge in T (p) that is incident on b. We call such a modification an improvement,
and we say b is improved by adding p.

—Block: Suppose p = (u, . . . ,v ) is a valid path and T (p) contains a bottleneck node b. Also
suppose that adding p toT makesu (orv or both) a bottleneck node. We sayu (orv or both)
blocks b from p in this case. Note that only pseudo-bottleneck nodes may block b.

—Unblock: In order to improve a bottleneck node b which is blocked by a pseudo-bottleneck
node u, we need to reduce the energy consumption of u before improving b. We say the
process of reducing the energy consumption of u the unblocking process. The details of the
unblocking process will be discussed in Section 4.4.

We will describe the proposed algorithm based on these notions.

4.2 Outline
In this subsection, we introduce the AMREST algorithm. The flow chart of AMREST is shown in
Figure 2. An outline of AMREST follows.

Step 1 (Build an initial tree). We initially construct a random spanning tree T . Given T , we
repeatedly remove leaves that are not source nodes until all the leaves are source nodes. Note that,
in this article, removing a node from a graph means that all of the edges incident on this node are
also removed.

Step 2 (Generate a forest). We generate a forest that contains only safe nodes or pseudo-
bottleneck nodes; later, we will repeatedly connect the components of the forest using valid paths
in order to reduce the load of bottleneck nodes. We generate forest F by removingVb ∪Vp fromT .
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Fig. 2. Flow chart of AMREST.

Step 3 (Find a valid path). Because improving a bottleneck node involves adding a valid path
and deleting an incident edge on it, we first need to find a valid path. Specifically, given the forest
F , we search for a valid path between two different components. If there is no valid path between
any two different components in F , we terminate the algorithm and outputT . Suppose there exists
a valid path between two different components F1 and F2. We choose the valid path pi = (u, . . . ,v )
that satisfies the rule described in Line 11 of AMREST. In AMREST, we define parameter iter_res
in order to track the number of iterations in which a node is added to the data-gathering tree.
For example, if node v is a safe node, we have iter_res (v ) = 0 since safe nodes are retained in the
data-gathering tree after Step 2. If node v is a pseudo-bottleneck node which is added during the
ith iteration, we have iter_res (v ) = i . Depending on whether T (pi ) contains a bottleneck node,
two cases may occur:

Case 1. T (pi ) contains no bottleneck nodes. Go to Step 4.
Case 2. T (pi ) contains at least one bottleneck node. Go to Step 5.
Step 4 (Update the forest). Our goal is to find a bottleneck node to improve; however, there

are no bottleneck nodes in T (pi ) at this point. We intend to find a new valid path by adding
some pseudo-bottleneck nodes to forest F . Specifically, we merge every component which contains
nodes in T (pi ) together with T (pi ) into a single component. In other words, the newly generated
component is a subgraph of T induced by the nodes in F (T (pi )) ∪T (pi ). Note that some nodes in
T (pi ) may not be in F but may have been added to forest F via the merging operation. After the
merging operation, we return to Step 3.

Step 5 (Update T ). Since a bottleneck node has been found, we can reduce its load via an
improvement. Specifically, let b ∈ T (pi ) denote the bottleneck node that has the minimum residual
energy among all the bottleneck nodes inT (pi ). We desire to improve the bottleneck node b. Two
cases may occur depending on the residual energy of u and v :

Case 1. Both u and v are safe nodes. In this case, we directly improve b by adding pi to T ,
deleting an incident edge on b. Note that, in T (pi ), there exist two edges which are incident on b.
We improve b by deleting one of the two edges that has the larger weight.
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ALGORITHM 2: Approximately Maximum min-Residual Energy Steiner Tree (AMREST)
1: Input a weighted graphG = (V ,L,W ), the initial energy I (v ) for all v ∈ V and the set of source nodes S .
2: Output a tree T ∈ T (S ).
3: Initialize T as a random spanning tree.
4: loop
5: Given a treeT , repeatedly delete leaves that are not source nodes until all the leaves are source nodes.
6: Compute Vb ,Vp ,Vs ,Vc based on T ; Generate a forest F by removing Vb ∪Vp ; Set

iter_res (vs ) = 0,∀vs ∈ Vs .
7: label_path=0 /∗indicator for valid paths∗/.
8: Initialize i = 1.
9: while the number of components in F is larger than 1 do

10: if there exists a valid path between different components F1 and F2 in F . then
11: label_path=1; Let pi = (u, . . . ,v ) be the valid path between F1 and F2 such that for any other

valid path p′ = (u ′, . . . ,v ′) between F1 and F2, we have that iter_res (u ′) ≥ iter_res (u) or
iter_res (v ′) ≥ iter_res (u).

12: if T (pi ) contains at least one bottleneck node. then
13: Find the bottleneck node b that has the minimum residual energy among nodes in T (pi ).
14: If adding pi makes u (or v) a bottleneck node, unblock u (or v) by using the Algorithm 3.
15: Add pi to T , and delete the edge in T (pi ) that connects to b and has the larger weight.
16: Break out of the while loop.
17: else
18: Merge every component that contains nodes in T (pi ) together with T (pi ) into a single

component /∗ the forest F is updated ∗/.
19: Set iter_res (v ) = i for each pseudo-bottleneck node v that is newly added to the forest F ;

i = i + 1.
20: end if
21: else
22: label_path=0. Break out of the while loop.
23: end if
24: end while
25: if label_path=0 then
26: Terminate and output the tree T .
27: end if
28: end loop

Case 2. u or v or both are pseudo-bottleneck nodes. In this case, b may be blocked by u (or v or
both). We first unblock u (or v or both), then make an improvement of b as in Case 1. Details of
the unblocking procedure are given in Section 4.4.

In both Case 1 and Case 2, T is updated. After updating T , we return to Step 2.
A pseudo-code of AMREST is presented in Algorithm 2. Next, we will provide an illustrative

example of AMREST.

4.3 Example
Consider the graph shown in Figure 3(a) where s1 is the sink. Figure 3(a) shows the initial tree T
in which every leaf is a source node. Nodes h1 and h2 are not in T and thus are candidate nodes.
Assume the following initial energy reserves for nodes b1, b2 and u2:

I (b1) = I (b2) = 4, I (u1) = 7.
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Fig. 3. Example of the AMREST algorithm.

Assume that the initial energy of the remaining nodes is sufficiently large. It follows that the
residual energy of b1,b2,u1 is given by

E (T ,b1) = 1, E (T ,b2) = 0, E (T ,u1) = 3,

where we have that R (T ) = E (T ,b2) = 0.
We will explain a single outer loop (Lines 4–28). We remove Vb ∪Vp from T and generate a

forest F which contains components {s1}, {s2}, {s3} and {s4}: see Figure 3(b). During the first while
iteration at Line 9, we find a valid path p1 = (s2,h1, s3) between {s2} and {s3}. Since there is no
bottleneck node in T (p1) = (s2,u1, s3), we merge every component that contains nodes in T (p1)
(i.e., {s2} and {s3}) together withT (p1) into a single component (Line 18): see Figure 3(c). There are
now three components in the forest: {s1}, {s4} and {s2,u1, s3}.

Next, we iterate the second while loop at Line 9. We find a valid path p2 = (u1,h2, s4) between
{s2,u1, s3} and {s4}. There exist two bottleneck nodes in T (p2); hence, we move to Line 13. We
choose to improve b2 since it has smaller residual energy than b1. Then we find that adding p2
reduces the residual energy of u1 from 3 to 1, which makes u1 a bottleneck node (i.e., u1 blocks
b2 from p2). Hence, we first improve u1 (i.e., unblock u1) by adding p1 and deleting (u1, s3): see
Figure 3(d). Note that we chose to delete (u1, s3) since the weight of (u1, s3), which is 2, is larger
than that of (u1, s2), which is 1. Finally, we improve b2 by adding p2 and deleting (b2, s4). This is
a simple example of unblocking; the general unblocking procedure will be detailed in the next
subsection. The new tree T1 is shown in Figure 3(e). Consequently, R (T1) = E (T1,b1) = 1; hence,
the minimum residual energy is increased from R (T ) = 0 to R (T1) = 1 after the single iteration of
AMREST.

4.4 Unblocking Procedure
In Line 14 of AMREST, we may need to unblock u or v . In this subsection, we explain de-
tails of the unblocking procedure. We will extend the unblocking technique for the node-degree
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ALGORITHM 3: Unblock u with iter_res (u) = k

1: P̃ : Set of valid paths that will be added to the component.
2: L̃: Set of edges in F (u) that will be deleted.
3: Ṽi : Set of nodes with iter_res (v ) = i .
4: Input the component F (u) which contains u.
5: Initialize P̃ = {pk } and L̃ = {lu } where lu ∈ T (pk ) is the edge that is incident on u and has the larger

weight.
6: Suppose among all the nodes in F (u), there are q different iter_res values that are not larger than k :

k = j1 > j2 > · · · > jq = 0.
7: for i = 2 to q − 1 do
8: if there exists a node v ∈ pt ∩Vji , where pt ∈ P̃ , such that adding pt makes v a bottleneck node.

then
9: P̃ = P̃ ∪ {pji }.

10: L̃ = L̃ ∪ {lv } where lv ∈ T (pji ) is the edge that connects to v and has the larger weight.
11: end if
12: end for
13: Add every path in P̃ to the component F (u) and delete every edge in L̃.
14: Output the updated component.

minimization for unweighted graphs in Fürer and Raghavachari (1994) to our case of residual en-
ergy optimization for weighted graphs.

In the unblocking procedure, we find a sequence of improvements to reduce the energy con-
sumption of the blocking node. Analogous to the parameter iter in Fürer and Raghavachari (1994),
we will use the parameter iter_res to track how the residual energy of a blocking node is iteratively
improved as follows. In order to improve a node, say u, we add a valid path p to T and delete an
edge from u. However, this may cause an endpoint of p, say v , to become a new bottleneck node.
Thus, we iterate a similar operation in order to improvev by adding another valid path p ′ toT , and
so on. At each iteration, the iteration count is assigned to the node to be improved as its iter_res
value. We say an improvement is in the jth level if the improvement is made for a node v with
iter_res (v ) = j. By assigning iter_res to the nodes, we can keep track of the level in which we in-
tend to improve the corresponding node; this enables us to prove some useful lemmas in the sequel.

Let us specifically explain how we unblock u with iter_res (u) = k . Initially, we add pk =

(uk , . . . ,vk ) to P̃ and add the edge in T (pk ), which is incident on u and has the larger weight
to L̃. Suppose iter_res (uk ) = j < k and adding pk makesuk a new bottleneck node. In this case, we
also need to make the improvement in the jth level to improve uk . Hence, we add pj = (uj , . . . ,vj )
to P̃ and add the edge inT (pj ) which is incident on uk and has the larger weight to L̃. This process
is repeated until adding a valid path does not create new bottleneck nodes. So far, we have found
P̃ and L̃. We finally unblock u by adding every path in P̃ to the tree and deleting every edge in L̃.
The pseudocode of the unblocking procedure is shown in Algorithm 3.

We show that a blocking node can be always unblocked.
Lemma 4.1. Any pseudo-bottleneck node u which blocks a bottleneck node can be unblocked

through Algorithm 3.

Proof. See Appendix B. !

In AMREST, T is updated during each outer loop (i.e., Lines 4–28). Some candidate nodes may be
added toT during the update ofT . We show that every added node will never become a bottleneck
node.
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Fig. 4. Example of unblocking the pseudo-bottleneck node u.

Lemma 4.2. Suppose there exist some candidate nodes which are added to T during the outer loop
at Line 4 of AMREST. Then, the residual energy of any newly added candidate node v ∈ Vc (T ) is at
least R (T ) +w (l†v ).

Proof. See Appendix C. !

Lemma 4.2 implies the following: Let T ′ be the tree obtained by updating T . Because a bottleneck
node is improved and no new bottleneck nodes are generated, we have that R (T ′) ≥ R (T ). Namely,
the minimum residual energy never decreases after the update of T .

Here, we mention key differences between our unblocking procedure and that in Fürer and
Raghavachari (1994):

—During the unblocking procedure in Fürer and Raghavachari (1994), any node which is not
inT can be selected to improve other nodes. However, the node selection is more restrictive
in our case; the improvements involve the valid paths only; that is, every intermediate node
selected in the added paths must be a candidate node that has sufficiently large residual
energy. The difference is because our problem generalizes and extends that of Fürer and
Raghavachari (1994); Fürer and Raghavachari (1994) deals with unweighted graphs without
residual energy constraints.

—Our unblocking procedure can immediately halt after adding a valid path p = (u, . . . ,v )
as long as u and v are not bottleneck nodes. This can occur even if u and v are pseudo-
bottleneck nodes. By contrast, in Fürer and Raghavachari (1994), the improvements must
be repeatedly made until bothu andv become a node with degree smaller than ∆ − 2,where
∆ is the maximum degree of nodes in the tree; nodes with this property are analogous to the
safe nodes in our setup. As a result, in their case, the unblocking procedure must hierarchi-
cally propagate to the initial blocking nodes. Consequently, our unblocking procedure may
require fewer improvement steps than in Fürer and Raghavachari (1994) given the same
network topology.

—Unlike (Fürer and Raghavachari 1994), we consider weighted graphs. As a result, there is
an opportunity to delete edges with large weights connected to pseudo-bottleneck nodes at
each improvement. Suppose a valid path is added to the tree in order to improve the pseudo-
bottleneck node u, creating a cycle containing u. Thus, we can remove one of the two edges
incident on u which are in the cycle. We propose to remove the one with the larger weight
(Line 10 of Algorithm 3), which helps to further reduce the energy burdens on u.

Figure 4 shows an illustrative example of the unblocking procedure. The component in the for-
est that contains u is shown in Figure 4(a). We assume that iter_res (u) = 3 > iter_res (u2) = 2 >
iter_res (u1) = 1. The valid paths chosen during the 1st, 2nd, and 3rd iterations are given by
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p1 = (s1, s2), p2 = (s3,h2, s4), and p3 = (u1,h1,u2), respectively. In order to unblock u, we make an
improvement of u by adding p3 and deleting (u,u2). Hence, we add p3 to P̃ and add (u,u2) to L̃.
Suppose adding p3 makes u1 a bottleneck node. We also need to improve u1 by adding p1 and
deleting (s1,u1). Thus, we add p1 to P̃ and add (s1,u1) to L̃. Note that adding p3 does not make u2
a bottleneck node; hence, we do not need to improve u2. So far, we have found P̃ and L̃. We add
every path in P̃ and delete every edge in L̃. Figure 4(b) shows the component after unblocking u.
Finally, the residual energy of the pseudo-bottleneck node is increased by 5.

4.5 Mitigating Inefficiency of Greedy Approach
There may exist deleterious effects of our greedy approach which maximizes the minimum residual
energy at each round. AMREST attempts to improve bottleneck nodes by iteratively augmenting
possibly long paths to the tree. Such long paths may incur excessive energy consumption across
the network, which may be harmful in the long run over the rounds. A similar issue was addressed
in Li et al. (2001) which introduces a novel framework to mitigate that effect. The authors proposed
the max−min zPmin algorithm, which finds a route between two nodes to maximize the minimum
residual energy along the route. A salient feature of max−min zPmin is that the algorithm explores
the tradeoff between the total energy cost and the minimum residual energy, where the total cost is
defined as the sum of edge weights. Specifically, max−min zPmin maximizes the minimum energy
under the constraint that the total cost of the resulting route does not exceed zPmin . Here, z ≥ 1
is a parameter and Pmin is the minimum total cost between the nodes.

Motivated by the max−min zPmin framework, we consider a simple modification of AMREST
as follows:

(1) Initially, we build an approximately optimal Steiner tree spanning the source nodes by us-
ing, for example, the algorithm in Robins and Zelikovsky (2000). The AMREST procedure
proceeds with that tree instead of the initialization in Line 3 of Algorithm 2. Denote the
total energy cost of that tree by C∗. z ≥ 1 is a given parameter.

(2) In the beginning of Loop in Line 4 of Algorithm 2, check if the total cost of the current
tree exceeds zC∗.

(3) If yes, terminate the procedure and output the tree from the previous loop. If no, continue
the loop.

Note that we begin with the approximately minimum cost C∗ by initially building an approxi-
mately optimal Steiner tree. Due to Step (2), the algorithm will check if the total cost exceeds zC∗
before adding a valid path to the tree. Thus, modified AMREST guarantees that the total energy
consumption of the output tree is at most zC∗. Thus, the modified algorithm enables us to strike
a balance between the minimum possible total cost and the minimum residual energy. Note that z
can be adaptively determined over the rounds by using a method similar to that in Li et al. (2001).

5 ALGORITHM ANALYSIS
We first analyze the performance of AMREST. Let R (T ∗) be the optimal solution to (P) defined in
Section 4. Denote Imax and Imin the maximum and minimum initial energy in I respectively.

Theorem 5.1. For an arbitrary weighted graph with an arbitrary set of source nodes S ∈ V and
initial energy setting I, the output T of AMREST spans S and satisfies

R (T ) ≥ R (T ∗) − (2β + α + (β − α )∆(G ) + Imax − Imin), (8)
where ∆(G ) denotes the maximum degree of G.

Proof. See Appendix D. !
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Theorem 5.2. Suppose there exists a polynomial time algorithm such that the output T ′ satisfies

R (T ′) > R (T ∗) − {β + (β − α )∆(G ) + Imax − Imin} (9)
for an arbitrary weighted graph with an arbitrary set of source nodes S and initial energy setting I.
We then have that P=NP1.

Proof. See Appendix F. !

Theorem 5.1 implies that the gap of the minimum residual energy between AMREST and the
optimal solution depends on the maximum degree and the initial energy setting. By combining
Theorems 5.1 and 5.2, we can make the following statement. Let T denote the output tree from
AMREST. If there exists a polynomial-time algorithm which outputs T ′ such that

R (T ′) − R (T ) > α + β (10)
for arbitrary weighted graphs and arbitrary sets of source nodes and initial energy settings, then
P=NP. In other words, any polynomial algorithm cannot outperform AMREST over all network
graphs and initial energy configurations by more than α + β , unless P=NP. The result shows that
there may exist algorithms that outperform AMREST under some initial energy and network set-
tings; however, it is hard to find an algorithm which universally outperforms AMREST over all
systems by more than a constant. We obtain a stronger statement on the performance of AMREST
in a “uniform” setting in which the initial energy settings and edge weights are identical. The
following corollary is a direct consequence of Theorems 5.1 and 5.2.

Corollary 1. Suppose Imax = Imin and α = β . Let T and T ′ denote the output of AMREST and an
arbitrary polynomial-time algorithm, respectively. Unless P=NP, the following holds for any given
graph and set of source nodes:

R (T ) ≥ R (T ′) − 2β . (11)
In other words, AMREST is near-optimal irrespective of the network size, and the optimality gap
is a constant.

Next, we analyze the computational complexity of AMREST. During each outer loop (Lines 4–
28), a bottleneck node b is improved and some candidate nodes are added toT . The residual energy
of b is increased to at least R (T ) + α . As for a safe node or an added candidate node v , the residual
energy ofv is at leastR (T ) +w (l†v ). Consider a pseudo-bottlenecku ∈ Vp (T ) whose residual energy
has changed during the loop. Two cases may occur:

—The degree of u remains unchanged. In other words, among the edges incident on u, one
edge in T is deleted, and one edge not in T is added. Thus, the residual energy of u is
decreased by at mostw (l†u ) − α . From the definition of pseudo-bottleneck nodes, the residual
energy of u is at least R (T ) + α .

—The degree of u is increased by one. This implies that one edge not in T but incident on u
is added, and u remains a pseudo-bottleneck node after adding the edge. Thus, the residual
energy of u is at least R (T ) +w (l†u ).

As a result, the residual energy of u is at least R (T ) + α . In summary, for any node whose residual
energy is changed during an outer loop, its residual energy is at least R (T ) + α after this outer
loop. Thus, after |Vb (T ) | loops, the minimum residual energy is at least R (T ) + α . In other words,
the minimum residual energy is increased by at least α after |Vb (T ) | loops. In the worst case, there
are O (n) bottleneck nodes in T and R (T ) = 0, I (b) = Imax, which results in O ( Imax

α n) outer loops.

1Here, P and NP denote complexity classes.
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We then evaluate the complexity of each outer loop (Lines 4–28). The complexity of Line 5
and Line 6 are both given by O (n). In Line 10, checking a valid path between u and v can be
implemented as follows. Given G = (V ,L), let G ′ = (Vc ,Lc ) be the subgraph induced by candidate
nodes. Let F ′i be the ith component inG ′. For a nodeu ∈ Vb ∪Vp , denoteC (u) the set of components
inG ′ that connect tou; that is,C (u) = {i : ∃(u,x ) ∈ L,∀x ∈ F ′i }. There exists a valid path betweenu
andv ifC (u) ∩C (v ) ! ∅. In the worst case, the complexity of constructingC (u) for allu ∈ Vb ∪Vp
is given by O ( |L|).

The complexity of Algorithm 3 is given by O (n) since there are at most n − 1 while iterations.
In Line 14, Algorithm 3 is invoked only once during each outer loop. In Line 18, we apply Tar-
jan’s union-find algorithm to form the forest during each while iteration, which is of complex-
ity |L|A−1 ( |L|,n) where A−1 ( |L|,n) is the inverse Ackermann’s function (Fürer and Raghavachari
1994; Tarjan 1975; Cormen et al. 2009). Thus, the complexity of each outer loop is given by
O ( |L|A−1 ( |L|,n))2. In conclusion, the complexity of AMREST is given by O ( Imax

α |L|nA−1 ( |L|,n)).

6 SIMULATION
In this section, we numerically evaluate the performance of AMREST. We use MATLAB software
to simulate data aggregation and the associated energy consumption. The sensor nodes are uni-
formly and randomly deployed in a unit square area. The sink is located at the top right corner.
We assume that there exists an edge between two nodes if the distance between the two nodes is
no greater than 0.5. Each node has the same initial energy (100 Joules). The weight of each edge is
independently and uniformly drawn from the range [1, 10]. We shall define the network lifetime
used in the simulations as follows.

Definition 6.1. Consider a sequence of n-dimensional data vectors x(1), x(2), . . .. We define the
lifetime of the network as the number of retrieved data vectors until any node in the network
depletes its energy.

We first consider the special case s = 1 (i.e., the case where A is dense). The SRS scheme with
s = 1 reduces to the traditional CDG; hence, we set m = k logn where k = logn. As a baseline
scheme, we consider the MST scheme, in which an MST is used as the data-gathering tree during
each round. We will make comparison with the MNL scheme (Liang and Liu 2007) as well. In
the MNL scheme, the data-gathering tree initially consists of the sink only. During each iteration,
a node, which has the maximum residual energy among all the nodes not in the tree, is added
to the tree. The process is repeated until every node is included in the tree. Figure 5 compares
the minimum residual energy for s = 1. The minimum residual energy plotted in the figure is
normalized with respect to the initial energy. For a fixed value of n, we run the simulation 100
times and compute the average minimum residual energy afterm measurements are collected. We
observe that AMREST outperforms the other schemes, increasing the minimum residual energy
by 11–45% and 2–7% compared to MST and MNL, respectively. We find that the minimum residual
energy decreases asn increases. This is becausem, the number of transmissions per node, increases
as n increases. Furthermore, we observe that the minimum residual energy of AMREST and MNL
decreases significantly more slowly in n than in MST. This is because both AMREST and MNL
attempt to balance the residual energy among the nodes. However, AMREST results in a more
gradual decrease in the minimum residual energy as the network size increases, as compared to
MNL.

2Note that the inverse Ackermann function is an extremely slowly increasing function; e.g., it increases even slower than
iterative logarithm (Boissonnat and Yvinec 1998). For any practical network size, A( |L |, n) can be effectively regarded as
a constant; e.g., A( |L |, n) is at most 5 for any practical finite numbers |L | and n (Boissonnat and Yvinec 1998).
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Fig. 5. Comparison of the minimum residual energy for the case s = 1.

Fig. 6. Comparison of the lifetime for the case s = 1.

Figure 6 compares the network lifetime for s = 1. We observe that the lifetime of AMREST
is very close to that of the GK algorithm (Stanford and Tongngam 2009), which was dedicated
to directly maximize network lifetime with the approximation ratio (1 − ϵ ). Note, however, that
GK is applicable only for the case s = 1. We observe that AMREST increases the lifetime by up
to 123% and 42% relative to MST and MNL, respectively. This shows that our algorithm, which
iteratively maximizes the minimum residual energy over multiple rounds, can be also very effective
in prolonging network lifetime.

Next, we compare the performance for s < 1. We will compare AMREST and the modified MST
scheme defined as follows. In modified MST, a minimum spanning tree is first constructed. We then
repeatedly delete leaves which are not source nodes until all the leaves are source nodes. Note that
we were unable to compare AMREST with MNL or GK when s < 1 because those algorithms are
designed for the case s = 1.

Figure 7 shows the distribution of the minimum residual energy for s = 0.5,n = 100, andm = 10.
We observe that the minimum residual energy of AMREST is significantly greater than that of the
modified MST. Furthermore, we observe that the variance of the distribution for AMREST is sig-
nificantly smaller than that of modified MST. This implies that the deviation of the residual energy
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Fig. 7. Cumulative distribution function of the minimum residual energy. The minimum residual energy in
the horizontal axis is normalized with respect to the initial energy.

Fig. 8. Probability density function of the lifetime ratio.

with respect to the random selection of source nodes is smaller for AMREST. We hence conclude
that the performance of AMREST is less sensitive to the choice of source nodes as compared to
the modified MST. Figure 8 compares the distribution of the ratio of the lifetime between AMREST
and the modified MST for s = 0.5, n = 100, and m = 10. We observe that the lifetime achieved by
AMREST is at least 60% larger than that of the modified MST scheme. Furthermore, the gain of the
lifetime reaches up to 115%.

Figures 9 and 10, respectively, compare the minimum residual energy and lifetime against the
retention probability s . We set n = 100,m = 10 in Figure 9, and set n = 100,m = 1 in Figure 10. We
observe that AMREST increases the minimum residual energy and lifetime by 22–37% and 102–
188%, respectively. We also observe that the minimum residual energy and lifetime both decrease
as s increases. This is because for larger s , a greater number of nodes are required to participate in
data gathering during each round. Moreover, we observe that the lifetime of AMREST decreases
faster in s for smaller values of s . A small s implies that the average number of source nodes in
the network is small. Thus, many nonsource nodes must be included in the data-gathering tree
in order to maintain the network connectivity. Now suppose we slightly increase s , which can be
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Fig. 9. Comparison of the minimum residual energy with varying s .

Fig. 10. Comparison of the lifetime with varying s .

hypothetically done by promoting some randomly selected nonsource nodes to new source nodes.
If s is small, it is likely that these new source nodes are not adjacent to other source nodes. Thus,
a relatively large number of non-source nodes need to be added to the data-gathering tree to keep
the source nodes connected. This phenomenon will be prominent when s is small, which explains
a steeper drop in the lifetime for smaller values of s .

Next, we evaluate the performance associated with the sparse matrices proposed in Theorem 2.2
and Theorem 2.3 (i.e., the matrices in Equations (4) and (6)). Figures 11 and 12 show the minimum
residual energy and the lifetime, respectively. For the matrix in Equation (4), we set h = 1/√n,
k = logn, s = 1/√n and m = k2 logn = log3 n. As for the matrix in Equation (6), we set k = logn,
s = 1

log n andm = k logn = log2 n. We observe that both of the minimum residual energy and life-
time under the same scheme decreases as n increases. This is because the average number of
source nodes for each round is sn = O (

√
n) in Theorem 2.2 and sn = O (n/ logn) in Theorem 2.3,

both of which are increasing in n. Furthermore, m is also increasing in n. We observe that AM-
REST increases the minimum residual energy by 24–78% and 8–31% for the sensing matrices in
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Fig. 11. Comparison of the minimum residual energy.

Fig. 12. Comparison of the lifetime.

Equations (4) and (6), respectively. The gains in network lifetime are 216–255% and 105–122% for
the sensing matrices in Equations (4) and (6), respectively.

Finally, we evaluate the performance of the proposed algorithm under different network topol-
ogy; specifically, with more sparse networks compared to the previous setup. We will shrink the
communication range R to 0.15. In this case, the network is critically connected when n = 100;
hence, the network topology results in a sparse graph. In the following simulations, we set the
sparsity of the data vector k = √n and the initial energy of each sensor to 1,000 Joules. Figure 13
compares the performance between cases R = 0.15 and R = 0.5 with s = 0.5. We observe that the
performance under more sparse network is worse: If the network is barely connected, many non-
source nodes must participate in the aggregation to keep the network connected. By contrast, if
the network is very dense, the aggregation tree can be potentially formed by the source nodes only,
and thus the aggregation requires relatively fewer nodes. Figure 14 compares the performance be-
tween cases R = 0.15 and R = 0.5 for different values of retention probability s with n = 100. We
observe a trend in performance similar to that in Figure 13. In addition, the minimum residual en-
ergy decreases more slowly in s for larger R. This is because if the network is critically connected,
there may exist nodes which are included in the tree irrespective of s in order to maintain the
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Fig. 13. Comparison of the minimum residual energy against the number of nodes n under different values
of communication range R.

Fig. 14. Comparison of the minimum residual energy against the retention probability s under different
values of communication range R.

network connectivity. Hence, we conclude that the size of tree, which directly affects the energy
performance, is relatively less sensitive to s .

7 EXPERIMENTS
7.1 Setup
In this section, we present experimental results on the proposed algorithm. IoT-LAB is one of the
largest public test beds for WSNs and Internet of Things (Adjih et al. 2015). It provides large-
scale open-source experimental platforms for sensing, computing, and communications, allowing
researchers to perform hands-on design and monitoring without the need to build individual plat-
forms, which typically is a complex and time-consuming task. Command-line or Web-based inter-
faces to the platform are available, and users can launch experiments across six sites in which 2,728
wireless sensors are accessible. Users can collect sensor readings on temperature, atmospheric
pressure, luminosity, and seismic data. The test bed also provides tools to monitor power, current,
or voltage consumption and RSSI at the sensor nodes.
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Fig. 15. WSN430 Open Node. Image from www.iot-lab.info.

Fig. 16. (Left) Photograph of IoT-LAB environment of EuraTech located at Lille, France. (Right) 3-D sensor
layout diagram of a testbed at Lille via Web interface for node selection and status check. Images from
www.iot-lab.info.

Fig. 17. Grid network for experiments.

Our experimental setup on IoT-LAB platform is as follows. For the hardware platform, we chose
WSN430 open node by IoT-LAB which uses 16-bit MSP430F1611 microcontroller with 10kB RAM
(Texas_Instruments 2009). The node is equipped with TI CC2420 chipset (Texas_Instruments 2006)
for radio communications, which is a low-power 2.4GHz transceiver compatible with IEEE 802.15.4
PHY standard. Figure 15 is a photograph of the WSN430 open node. Figure 16 shows an example of
the 3-D layout of the sensors in IoT-LAB. We consider a grid topology of dimension 4×12, shown
in Figure 17; hence, there are a total of 48 nodes. The spacing between two nodes is 0.60m.

We implemented our test program on Contiki, which is a lightweight open-source OS de-
signed primarily for IoT devices (Dunkels et al. 2004). For the MAC protocol, Contiki OS uses a
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Table 2. Testbed Setup

Parameter Value
microcontroller MSP430F1611
radio chip TI CC2420
PHY IEEE 802.15.4@2.4 GHz
transmit power 0 dBm
OS Contiki
MAC X-MAC
protocol stack Rime
topology 4×12 regular grid
node spacing 0.60m

compatibility version of X-MAC (Buettner et al. 2006), which is an asynchronous duty-cycled MAC
protocol running on top of 802.15.4 PHY. The protocol stack for packet communications in our test
bed is Rime (Dunkels 2007), which is a simplified communication stack with “thin” protocol layers
suitable for sensor networks. Table 2 summarizes our test bed environment.

Similar to other aggregation methods such as CDG, the packet size in AMREST is fixed.
In our experiment, the nodes generate and transmit hypothetical sensing data that is 8-byte
long and is aggregated through the routing tree constructed by AMREST. Random sensing ma-
trix A is generated in a distributed manner using PRNG, according to the method described in
Section 3. For packet transmissions, we leverage the reliable unicast mechanism provided by the
Rime protocol stack. This is because every data packet must be eventually delivered to the sink.
Thus, occasional retransmissions of data packets may occur in the experiment. Later, we will dis-
cuss such retransmission issues in further detail.

Next, we will explain how we calculate the energy consumption of nodes based on measure-
ments. There are two issues in real-time measurement of power consumption and residual battery
levels. First, real-time measurements of energy expenditures are not readily available at WSN430
nodes at runtime; instead, the power consumption can be read from a log file at the server through
an SSH interface. Second, WSN430 nodes are operated in DC power mode, hence it is of no use to
read the residual battery level. Our workaround for these issues is as follows. Each node maintained
variable residual_level which represents a hypothetical residual battery level of that node. At
every transmission attempts, residual_level is decremented by variable energy_per_tx,which
represents the energy expenditure per transmission. energy_per_tx is determined based on mea-
surements as follows.

A measurement of a node’s power consumption is shown in Figure 18. The plot shows the power
consumption associated with periodic packet transmissions at every 3.5 seconds from a WSN430
transmitter to a receiver. For the simplicity of our power calculation, only the power consump-
tion at transmission epochs (marked peaks in Figure 18) will be counted as the actual transmit
(TX) and receive (RX) power expenditures.3 At each transmission, we will randomly generate
energy_per_tx from the empirical distribution of TX power consumption. The distribution is ob-
tained from measurements such as those in Figure 18. A similar procedure is done for estimating
RX power consumption (e.g., by defining variable energy_per_rx).

3Perhaps due to some system activities associated with real-time systems (e.g., context switching), we observe periodic
overshoots in power consumption in Figure 18. These activities cannot be controlled by test bed users. For simplicity, we
will ignore these overshoots and the idle power. Specifically, we will assume that a perfect power control/sleep scheduling
is in action; hence, power consumption other than packet TX/RX is negligible.
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Fig. 18. Power consumption in periodic packet transmissions between a WSN430 transmitter and a receiver.
The transmission epochs correspond to periodic peaks (marked) at every 3.5 seconds; the intermittent “over-
shoots” outside the plot are presumably due to other system activities.

We observe that, in Figure 18, the RX power consumption is similar to that for TX. This obser-
vation is consistent with our assumption that TX and RX power are approximately equal, hence it
demonstrates the practicality of our assumption. It also matches the technical specification of TI
CC2420 such that active RX consumes a current of 18.8mA whereas active TX consumes 17.4mA
(Texas_Instruments 2006). Note that, in order to implement AMREST, we need to assign edge
weights w (u,v ) for nodes u and v which represents the energy consumption per packet transfer.
We will simply set weight w (u,v ) as the mean of energy_per_tx and energy_per_rx of nodes u
and v .

7.2 Results
In our 4×12 grid network in Figure 17, the sink node is located at the top right corner. We set the
sparsity parameter at k = √n, which makes the required number of measurements m = √n logn
with n = 48 in our experiment. The initial energy level of the sensors is set to 0.35 Joules. In AM-
REST, the nodes should keep track of the other nodes’ energy levels. In practice, unexpected ex-
penditures of energy may occur (e.g., packet retransmissions). This causes a mismatch between
the actual energy level of a node and the other nodes’ belief on that node’s energy level, whereas
AMREST is run based on such beliefs on energy profiles. Thus, it is necessary that nodes occa-
sionally update their residual energy information to the network. In order to prevent nodes from
sending too frequent updates, we will make the following method for updates.

A node will notify its energy level to the network only if the actual energy level substantially
deviates from the other nodes’ beliefs. Specifically, a node will send updates only if (i) the error
between the current energy level and belief exceeds τ1%, and (ii) the number of rounds since the
last update exceeds threshold τ2. Note that the error in (i) is relative to the current energy level.

ACM Transactions on Sensor Networks, Vol. 13, No. 3, Article 22. Publication date: August 2017.



Collection of Sparse Data in Wireless Sensor Networks 22:27

Fig. 19. Cumulative distribution function of the minimum residual energy.

Fig. 20. Comparison of the minimum residual energy in experiments and the minimum residual energy in
the ideal case.

The idea is that, due to (i), a node with large energy levels will be relatively insensitive to a few
retransmissions; also, (ii) prevents the nodes with low energy levels from sending updates too of-
ten. Thus, our update method can adapt to nodes’ residual energy levels without causing excessive
communication overheads. In our experiment, we set τ1 = 5% and τ2 = 10 rounds.

Figure 19 shows the distribution of the minimum residual energy under the case s = 0.2. We
make several observations that match our simulation results. For example, the energy levels under
AMREST tend to be higher than those under the modified MST. Also the variance of energy levels
under AMREST is smaller than that under the modified MST.

Next, we examine the robustness of AMREST against imprecise system information. Figure 20
compares the experimental results versus the ideal case, which we define as follows. We assume
that perfect information on residual energy levels of the entire network is available at any time
without any overhead. By contrast, in the experiments, AMREST may suffer from imprecise in-
formation due to, for example, unexpected retransmissions and stochastic amounts of energy con-
sumption at other nodes. Exact information becomes available only intermittently by our update
method, which incurs some communication overheads. Indeed, we observe that the performance
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Fig. 21. Number of retransmissions over the rounds.

Fig. 22. Comparison of the round at which the update of residual energy occurs between s = 0.1 and s = 0.9.
The value 1 represents the information of residual energy is updated.

under the experiment is only slightly worse than that under the ideal case. However, the gap is
small because our method adaptively updates the information according to nodes’ energy levels
without causing much overhead. This demonstrates the robustness of our algorithm.

Next, we present some statistics on the updates of residual energy information. The information
update is mainly caused by packet retransmissions. Figure 21 shows the number of retransmis-
sions in the network over the rounds. The overall number of retransmissions is not high, perhaps
due to short-distance and line-of-sight links among sensors in our experiment. Figure 22 shows
the round at which the update of residual energy information occurs. For example, when s = 0.1,
the information is updated at rounds 33 and 22 for AMREST and the modified MST, respectively.
Overall, the updates under AMREST occur less frequently than those under modified MST, which
results in a lower overhead for AMREST. This is because the energy levels under AMREST tend to
be higher, and, according to our update method, the nodes with higher energy levels will update
their information less often. We also observe that the updates become more frequent for larger
values of s . This is because there are more source nodes in the network, which leads to higher
energy consumption.
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8 CONCLUSION
In this work, we proposed an energy-efficient data-gathering algorithm exploiting sparse random
sampling of the sensor nodes. Our goal is to maximize the minimum residual energy at the retrieval
of the original data vector. We proposed a greedy algorithm that optimizes data collection in a
round-by-round manner. During each round, we randomly select source nodes according to a fixed
probability. We proved that the problem is NP-complete and proposed the algorithm AMREST to
approximately construct a maximum minimum residual energy Steiner tree for each round. Our
analysis shows that AMREST is provably near-optimal; in case of uniform initial energy reserves
and edge weights, the optimality gap achieved by AMREST is constant and does not depend on
network size and topology. From the simulation results, we observe that AMREST is able to prolong
the network lifetime even for the case s = 1, where the sensing matrix is dense. Also, when s <
1, our scheme significantly outperformed the baseline schemes in terms of both the minimum
residual energy and network lifetime.

APPENDIXES
A PROOF OF THEOREM 3.1
We will use a reduction argument to prove NP-completeness. Suppose there exists hypothetical
algorithm P which can solve (P) in polynomial time. We will show that the existence of P would
imply that one can solve the Hamiltonian path problem (Garey and Johnson 2002), which is NP-
complete, in polynomial time. Note that a similar idea of the proof was used in Wu et al. (2010).

We will represent an instance of (P) by a 4-tuple. Specifically, an instance is represented by
H = (G,w,I, S ), whereG = (V ,L) is a graph, w is the edge weight function, I is the set of initial
energy, and S ⊆ V is the set of source nodes. Suppose we are given an arbitrary graph G = (V ,L).
We will create an instance H = (G,w,I,V ) of (P) as follows. We take G as the input graph G to
(P). We let I (v1) = ∞, I (v2) = · · · , I (vn ) = 1, and set all the edge weights to a constant β ∈ (0, 1

n ).
Let the set of source nodes S = V . Clearly, because the edge weights and initial energy reserves are
identical across the network, a minimum-degree spanning tree in G would be the solution to (P).
This implies that, if there exists a Hamiltonian path, say T ∗, then T ∗ is a solution to (P). T ∗ yields
the optimal value of 1 − 2β (assuming n ≥ 3) because any vertex inT ∗ has the degree of at most 2.

Now suppose we solved (P) usingP and obtained the optimal value denoted by r ∗. We can decide
the existence of the Hamiltonian path in G by comparing r ∗ with 1 − 2β as follows. If r ∗ ≥ 1 − 2β ,
it implies that there exists a Hamiltonian path which is a solution to (P); if r ∗ < 1 − 2β , then there
exists no Hamiltonian path because T ∗ would yield higher minimum residual energy given by
1 − 2β , which is a contradiction.

In summary, if there exists P, we can decide the existence of a Hamiltonian path for an arbitrary
graph in polynomial time. Therefore, (P) is NP-complete.

B PROOF OF LEMMA 4.1
We prove this lemma by induction on iter_res (u). Suppose iter_res (u) = 1. This implies that u is
added to the forest during the first while iteration (Line 9). Because all of the pseudo-bottleneck and
bottleneck nodes are removed before while iterations start, both endpoints of p1 are safe nodes.
Note that pi is the chosen valid path during the ith round. We can improve u by adding p1 to
T and deleting an edge in T (p1) that is incident on u. Suppose any pseudo-bottleneck node v
with iter_res (v ) ≤ k can be improved. Consideru with iter_res (u) = k + 1. Letpk+1 = (u ′, . . . ,v ′).
We have that iter_res (u ′) ≤ k and iter_res (v ′) ≤ k . By the assumption, both u ′ and v ′ can be
improved. After improving u ′ and v ′, we can improve u by adding pk+1 and deleting an edge in
T (pk+1) that is incident on u.
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C PROOF OF LEMMA 4.2
We leverage the idea in Fürer and Raghavachari (1994) to prove this lemma. Consider a single outer
loop of AMREST at Line 4. Suppose a bottleneck node b is improved by adding pk = (u, . . . ,v )
and deleting an edge incident on b during the kth while iteration (Line 9). Suppose both u and v
need to be unblocked before improving b. In the updated tree, each newly added node must be a
candidate node because only the nodes in valid paths can be added to T . We will show that the
added candidate nodes will have a degree of no more than two in the updated tree. This can be
shown by proving the following three claims:

(a) In the procedure of unblocking u (or v), each added candidate node is involved in only
one improvement.

(b) Unblocking u and v involves a disjoint set of candidate nodes.
(c) Any candidate node in pk is not involved in the unblocking of u or v .

First, we prove Claim (a) by contradiction. Recall that, to unblock a pseudo-bottleneck node
u in Algorithm 3, we make a sequence of improvements. Suppose that the improvements on u ′

and u ′′ are included in the unblocking procedure of u and that both of the improvements in-
volve a candidate node h. Without loss of generality, we assume that iter_res (u) > iter_res (u ′) =
i > iter_res (u ′′) = j. This implies that both pi = (ui , . . . ,vi ) and pj = (uj , . . . ,vj ) contain the
candidate node h. The pseudo-bottleneck node u ′′ is added to the forest before u ′ since i > j.
Let F be the forest at the beginning of the ith iteration. Then u ′′ belongs to either compo-
nent F (ui ) or component F (vi ). Without loss of generality, suppose u ′′ belongs to the com-
ponent F (ui ). This implies that uj also belongs to F (ui ), and j ≤ iter_res (ui ) where the equal-
ity holds when u ′′ = ui . Consider the valid path p = (uj , . . . ,h, . . . ,vi ), which is constructed by
combining the subpath from uj to h in pj and the subpath from h to vi in pi . Obviously, p is
also a valid path that connects the component F (ui ) and the component F (vi ) in F . Further-
more, we have that iter_res (uj ) < j ≤ iter_res (ui ), which contradicts the choice of the valid
path pi .

Second, we prove Claim (b) by contradiction. Suppose unblocking u and v both involve the
same candidate node, say h. Assume that unblocking u involves the improvement on u ′ with
iter_res (u ′) = i , and unblocking v involves the improvement on v ′ with iter_res (v ′) = j. Then,
both pi = (ui , . . . ,vi ) and pj = (uj , . . . ,vj ) include h. Let F be the forest at the beginning of the
kth iteration. Then we have that ui ∈ F (u),vj ∈ F (v ), and i ≤ iter_res (u), j ≤ iter_res (v ). Con-
sider the pathp = (ui , . . . ,h, . . . ,vj ) which is constructed by combining the subpath fromui toh in
pi and the subpath fromh tovj inpj . Obviously,p is a valid path that connects component F (u) and
F (v ). Furthermore, we have that iter_res (ui ) < i ≤ iter_res (u) and iter_res (vj ) < j ≤ iter_res (v ),
which contradicts the choice of pk .

Third, Claim (c) can be proved in a similar way to Claim (b).
In summary, every added node will have a degree of no more than two in the updated tree. This

implies that the energy consumption of a candidate node v added to the updated tree is at most
2w (l†v ). From the definition of the candidate nodes, the residual energy of v in the updated tree is
at least R (T ) +w (l†v ).

D PROOF OF THEOREM 5.1
Given T , let Q ⊆ Vp (T ) be an arbitrary subset and U := Vb (T ) ∪Q . Let F be the forest generated
by removingU from T . Suppose G satisfies the condition that there exists no valid paths between

ACM Transactions on Sensor Networks, Vol. 13, No. 3, Article 22. Publication date: August 2017.



Collection of Sparse Data in Wireless Sensor Networks 22:31

different components in F . In that case, we will show that the following holds:

R (T ) ≥ R (T ∗) − {2β + α + (β − α )∆(G ) + Imax − Imin
}
. (12)

We define a component in F which contains at least one source node as a source component.
The set of source components in F is denoted by Fs. We establish a useful inequality which relates
T and Fs as follows.

Lemma D.1. We have that
∑

v ∈U
D (T ,v ) ≤ |Fs | + 2|U | − 2. (13)

For the proof of Lemma D.1, refer to Appendix E.
Consider the optimal data-gathering tree for the subgraph (V −Vnc (T ),L), which we denote by

T † = (VT † ,LT † ). We observe that T † satisfies the following constraints:

—All the leaves in T † belong to S .
—T † contains all the source nodes that belong to either a component in Fs or the set U .
—In T †, the source nodes that belong to different components in Fs are connected through

some nodes inU . This is because, by assumption,G satisfies the condition that there are no
paths through the nodes of V − (U ∪Vnc (T )) between any components in F , and T † does
not contain nodes in Vnc (T ). Let U † = U ∩VT † be the subset of nodes in U which are used
to connect the source nodes in Fs within the optimal tree T †.

Note thatT † contains all of the nodes inU † and spans the source nodes in every component in Fs.
Because the nodes inU † are disjoint from the nodes in the components in Fs, and each component
in Fs contains at least one source node, there must exist at least |U † | + |Fs | − 1 edges in T †. Thus,
we have that ∑v ∈U † D (T †,v ) ≥ |U † | + |Fs | − 1. Consequently,

1
|U † |

∑

v ∈U †
D (T †,v ) ≥ 1 + |Fs | − 1

|U † | ≥ 1 + |Fs | − 1
|U | (14)

≥ 1
|U |
∑

v ∈U
D (T ,v ) − 1 + 1

|U |, (15)

where the second inequality of Equation (14) follows from |U † | ≤ |U | and Equation (15) follows
from Lemma D.1. Thus, we can bound R (T †) as follows:

R (T †) ≤ min
v ∈U †

E (T †,v ) ≤ 1
|U † |

∑

v ∈U †
E (T †,v )

=
1
|U † |

∑

v ∈U †

⎡⎢⎢⎢⎢⎢⎣
I (v ) −

∑

l ∈LT †∩Lv

w (l )

⎤⎥⎥⎥⎥⎥⎦
≤ 1
|U † |

∑

v ∈U †
[I (v ) − αD (T †,v )] (16)
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≤ 1
|U † |

∑

v ∈U †
I (v ) − α

⎧⎪⎨⎪⎩
+
,

1
|U |
∑

v ∈U
D (T ,v )-. − 1 + 1

|U |
⎫⎪⎬⎪⎭ (17)

=
1
|U |
∑

v ∈U
[I (v ) − αD (T ,v )] + α − α

|U |

+
1
|U † |

∑

v ∈U †
I (v ) − 1

|U |
∑

v ∈U
I (v )

≤ 1
|U |
∑

v ∈U

⎡⎢⎢⎢⎢⎢⎣
I (v ) −

∑

l ∈LT ∩Lv

w (l )

⎤⎥⎥⎥⎥⎥⎦
+ α

+
1
|U |
∑

v ∈U

⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
∑

l ∈LT ∩Lv

w (l )
⎫⎪⎪⎬⎪⎪⎭
− αD (T ,v )

⎤⎥⎥⎥⎥⎥⎦
+ Imax − Imin

=
1
|U |
∑

v ∈U

⎡⎢⎢⎢⎢⎢⎣
I (v ) −

∑

l ∈LT ∩Lv

w (l )

⎤⎥⎥⎥⎥⎥⎦
+ α

+
1
|U |
∑

v ∈U

⎧⎪⎪⎨⎪⎪⎩
∑

l ∈LT ∩Lv

[w (l ) − α]
⎫⎪⎪⎬⎪⎪⎭
+ Imax − Imin

≤ R (T ) + 2β + α + 1
|U |
∑

v ∈U

⎧⎪⎪⎨⎪⎪⎩
∑

l ∈LT ∩Lv

[β − α]
⎫⎪⎪⎬⎪⎪⎭
+ Imax − Imin, (18)

≤ R (T ) + 2β + α + (β − α )∆(G ) + Imax − Imin, (19)
where Equation (17) is due to Equation (15); Equation (18) holds since, by definition, E (T ,v ) ≤
R (T ) + 2β holds for all v ∈ U ; and Equation (19) follows from the definition of ∆(G ).

Finally, let us consider the optimal treeT ∗ = (VT ∗ ,LT ∗ ) for the graphG = (V ,L). Two cases may
occur:

—VT ∗ ∩Vnc (T ) = ∅. The optimal tree forG does not contain nodes inVnc (T ). BecauseT † is an
optimal tree for (V −Vnc (T ),L), T † is also optimal for G. We have that

R (T ∗) = R (T †)

≤ R (T ) + 2β + α + (β − α )∆(G ) + Imax − Imin.

—VT ∗ ∩Vnc (T ) ! ∅. In this case, there exists a node that is not included inT butT ∗. Then, for
any v ∈ VT ∗ ∩Vnc (T ), we have that

R (T ∗) ≤ E (T ∗,v ) ≤ I (v ) − 2α , (20)
≤ R (T ) + 3w (l†v ) − 2α (21)
≤ R (T ) + 3β − 2α = R (T ) + 2β − α + (β − α )

≤ R (T ) + 2β + α + (β − α )∆(G ),

where Equation (20) holds since v is not a source node and thus not a leaf node, and Equa-
tion (21) follows from the definition of Vnc (T ).

In summary, we have that R (T ∗) ≤ R (T ) + 2β + α + (β − α )∆(G ) + Imax − Imin.
Now we are ready to prove Theorem 5.1. Consider the forest variable F in AMREST, and suppose

the algorithm has just terminated. According to the terminating condition, there exist no valid
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paths between different components in F . The theorem is proved by letting Q ⊆ Vp (T ) be the set
of pseudo-bottleneck nodes that does not belong to F , and by letting U = Vb (T ) ∪Q , and, finally,
by applying Equation (12).

E PROOF OF LEMMA D.1
Given T ∈ T (S ) and F , we will generate a hypothetical tree T ′ as follows. We construct T ′ by
removing all the nonsource components from T and by adding hypothetical edges, according to
the following procedure:

(1) Pick a nonsource component Fi ∈ F c
s . Note that Fi consists of nonleaf nodes inT because

all the leaf nodes belong to S .
(2) Suppose there are e edges in T between Fi and U . Let Vi denote the nodes in U which

are the endpoints of those e edges. We first remove the e edges and then interconnect the
nodes inVi with e − 1 hypothetical edges. This operation will preserve connectivity and
acyclicity of the nodes in U .

(3) Repeat the above for every nonsource component in Fi ∈ F c
s .

By construction, T ′ spans S and contains both hypothetical edges and the actual edges of T . In
Step 2, the removal of e edges will decrease the sum of degrees of nodes in U by e . However, at
the same time, the addition of e − 1 hypothetical edges increases the sum of degrees of nodes inU
by 2(e − 1). Thus, the overall sum of degrees increases by e − 1 after Step 2. Because Fi contains
no leaf nodes, we have that e ≥ 2. This implies that the sum of degrees of the nodes inU does not
decrease after the preceding procedure, that is, we have that

∑

v ∈U
D (T ′,v ) ≥

∑

v ∈U
D (T ,v ). (22)

Figure 23 shows an example of building the hypothetical T ′. F contains two non-source com-
ponents, {v2} and {v4,v5}, which we denote by F1 and F2, respectively. For F1 = {v2}, there are 3

Fig. 23. Example of the modification. Figure 23(a) shows the original tree T . Figure 23(b) shows the forest
after removingU . There are three components: one source component {v1}, and two nonsource components
F1 := {v2} and F2 = {v4,v5}. Figure 23(c) shows the tree after the modification with respect to the non-source
component F1 = {v2}. After the modification with respect to F2, we obtain the hypothetical treeT ′, as shown
in Figure 23(d).

ACM Transactions on Sensor Networks, Vol. 13, No. 3, Article 22. Publication date: August 2017.



22:34 X. Yu and S. J. Baek

edges inT betweenv2 andU : (v2,v3), (v2,v6) and (v2,v7). We remove these 3 edges (Figure 23(b))
and add hypothetical edges (v6,v7) and (v3,v7) (Figure 23(c)). For F2 = {v4,v5}, we remove edges
(v3,v4), (v5,v8) and add the hypothetical edge (v3,v8) (Figure 23(d)). The new tree T ′ after the
modification of every nonsource component is shown in Figure 23(d).

GivenT ′, denote the number of edges (including hypothetical edges) by a such that both of their
endpoints belong toU . Denote b the number of edges inT ′ which are incident on nodes inU . We
have that a = |U | − 1 since T ′ is a tree. A similar counting argument shows that

b = |Fs | + |U | − 1, (23)
where |Fs | is the number of source components in F . For example, in Figure 23(d), we have that
a = 3 and b = 4. We observe that

∑

v ∈U
D (T ′,v ) = 2a + (b − a) = a + b . (24)

Thus, we have that, from Equations (22), (23), and (24),

|Fs | + |U | − 1 =
∑

v ∈U
D (T ′,v ) − ( |U | − 1)

≥
∑

v ∈U
D (T ,v ) − ( |U | − 1),

which proves the lemma.

F PROOF OF THEOREM 5.2
We take a similar approach to the proof of Proposition 3 in Wu et al. (2010). Let algorithm P de-
note a polynomial time algorithm that outputs a treeT ′ with R (T ′) > R (T ∗) − (β + (β − α )∆(G ) +
Imax − Imin) for an arbitrary instanceH = (G,w,I, S ). For the definition of the instanceH of (P),
refer to Appendix A. Based on the graphG, we will construct another instanceH ′ = (G,w ′,I ′,V )
which has the same topology asH but different initial energy settings I ′(v1) = I (v1) = ∞, I ′(v2) =
I ′(v3) = · · · = I ′(vn ) = 1. Define the edge weight function: w ′ : L → {β } where β ∈ (0, 1

n ) is the
maximum edge weight in the instance H . The function w ′ implies that α = β . Suppose we in-
put H ′ to the algorithm P and obtain the output T ′. Then, R (T ′) > R (T ∗) − β must hold by the
assumption on T ′.

Next, we show thatG contains a Hamiltonian path if and only if (⇔) the output of algorithm P
satisfies R (T ′) > 1 − 3β . In other words, we can check whether G contains a Hamiltonian path by
inputting H ′ to algorithm P and checking whether R (T ′) > 1 − 3β . Obviously, constructing the
instanceH ′ and running algorithm P can be completed in polynomial time.

Sufficiency (⇒): Suppose G contains a Hamiltonian path p = (Vp ,Lp ). We have that

R (p) = min
v ∈Vp

⎡⎢⎢⎢⎢⎢⎣
I ′(v ) −

∑

lv ∈Lp

w ′(lv )

⎤⎥⎥⎥⎥⎥⎦
= 1 − 2β .

Moreover, by the optimality of T ∗, we have that R (T ∗) ≥ R (p) = 1 − 2β . Finally, we have that
R (T ′) > R (T ∗) − β ≥ 1 − 3β .

Necessity (⇐): Assume that R (T ′) > 1 − 3β . This implies thatD (T ′,v ) ≤ 2 for allv ∈ V . In order
to see this, let us assume that D (T ′,u) ≥ 3 for someu ∈ V . Then we obtain that R (T ′) ≤ E (T ′,u) =
I ′(u) − βD (T ′,u) ≤ 1 − 3β , which is a contradiction. Since T ′ is a spanning tree in G with maxi-
mum degree 2, it is exactly a Hamiltonian path in G. Therefore, the existence of such P implies
that the Hamiltonian path problem can be decided in polynomial time, which completes the proof.
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